Interactive worksheets. Search results: dodawanie ułamków o tych samych mianownikach. Order results: Ułamki - dodawanie. by martawie.
3. Proporcje i procenty: Ułamki zwykłe są przydatne do wyrażania proporcji i procentów. Na przykład, 1/4 oznacza jedną czwartą, czyli 25% całości. Zrozumienie ułamków zwykłych pozwala na obliczanie różnych proporcji i procentowych wartości w kontekście zadań związanych z finansami, statystyką czy planowaniem. Dziesiętne: 1.
Dodawanie i odejmowanie ułamków o różnych mianownikach Posted on 14 grudnia 2022 Updated on 14 grudnia 2022 by Ula K Categories: Matematyka klasa 5 Notatka zwierająca najważniejsze wiadomości z dodawania i odejmowanie ułamków o różnych mianownikach, w której przedstawiono dwa sposoby obliczeń.
Odejmowanie ułamków. Odejmowanie ułamków – Twoim zadaniem jest poprawne wykonanie odejmowania ułamków zwykłych, które mają różny mianownik. Po wykonaniu obliczeń wpisz ułamek w kratkę na dole, wykorzystując ukośnik „/”. Pamiętaj o tym żeby końcowe wyniki doprowadzać do najprostszej postaci (skracając ułamki), bo
Przeglądaj arkusze Dodawanie i odejmowanie ułamków zwykłych do wydrukowania dla Klasa 7 Arkusze dodawania i odejmowania ułamków dla klasy 7 to podstawowe narzędzia dla nauczycieli, którzy chcą poprawić zrozumienie przez uczniów pojęć matematycznych, zwłaszcza ułamków.
Klasa 2 Klasa 3 Matematyka dodawanie i odejmowanie do 100 działania z okienkami Nowa Era. Odejmowanie ułamków o jednakowych mianownikach Teleturniej. autor: Marzenawoj. Klasa 4 Klasa 5 Matematyka. Dodawanie ułamków o jednakowych mianownikach Losowe karty.
dodawanie ułamków, mnożenie ułamków, ułamki zwykłe, dzielenie ułamków, odejmowanie ułamków, dodawanie i odejmowanie ułamków, dodawanie i odejmowanie ułamków o różnych mianownikach, porównywanie ułamków, skracanie ułamków, dzielenie ułamków zwykłych, ułamki dziesiętne, zamiana ułamków zwykłych na dziesiętne, mnożenie ułamków zwykłych, dodawanie i odejmowanie
P2KYI. Chcesz przygotować trzy szejki. Oto ich przepisy. Podstawowym składnikiem jest mleko. W lodówce masz zamknięty karton o pojemności 1 i 1/2 litra. Za chwilę pokażę ci, jak za pomocą dodawania sprawdzić, czy masz wystarczająco dużo mleka. Widzisz dwie pizze jednakowej wielkości. Tę po lewej podzielono na 3 jednakowe części a tę po prawej na 6 jednakowych kawałków. Z tej pizzy zjedzono jeden kawałek. Można więc powiedzieć, że zostały dwie trzecie pizzy. Zapiszę tę liczbę tutaj: dwie trzecie. Z tej pizzy zjedzono pięć kawałków. Można więc powiedzieć, że została jedna część z sześciu, czyli jedna szósta pizzy. Aby dowiedzieć się, ile kawałków pizzy nam zostało, należy dodać do siebie oba ułamki. Zobacz jednak, że mają one różne mianowniki. Umiesz już dodawać ułamki o takich samych mianownikach. Co możemy zrobić, aby oba ułamki miały takie same mianowniki? Jeszcze raz przypomnę że ta pizza jest podzielona na trzy jednakowe części, a ta na sześć. Moglibyśmy więc podzielić tę pizzę na tyle samo części, na ile podzielono tę pizzę. Teraz oba wypieki są podzielone na 6 jednakowych części. Zwróć też uwagę, że te kawałki są takiej samej wielkości, jak ten kawałek. Na początku zapisaliśmy, że zostały dwie trzecie tej pizzy. Gdybyśmy pokroili ją na 6 części, to zostałyby cztery szóste pizzy. Ułamek 2/3 możemy rozszerzyć do ułamka 4/6 mnożąc licznik i mianownik przez dwa. Skoro 2/3 to jest to samo, co 4/6 to w tym dodawaniu ułamek 2/3 możemy zamienić właśnie na cztery szóste. Co otrzymamy? Cztery szóste plus jedna szósta. Przypomnę, że gdy dodajemy ułamki o takich samych mianownikach to dodajemy do siebie liczniki a mianownik przepisujemy. Cztery dodać jeden to pięć. Co otrzymamy? Pięć szóstych. Wyobraź sobie teraz, że ten kawałek przekładamy do pizzy po lewej. Zająłby on na przykład to miejsce. Widzisz więc, że zostało 5/6 jednej pizzy. Spójrz teraz na taki przykład. Tutaj mamy jedna druga dodać jedna piąta. Te ułamki również mają inne mianowniki. Aby dodać ułamki o różnych mianownikach musimy je zapisać w taki sposób aby miały takie same mianowniki. Ten sam mianownik będzie wspólną wielokrotnością liczb 2 i 5. Zacznijmy od wypisania kilku wielokrotności liczby 2. Wielokrotnościami liczby 2 są liczby: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 i 20. Tyle nam wystarczy. Wypiszmy teraz kilka wielokrotności liczby 5. Są to liczby: 0, 5, 10, 15 i 20. Które spośród zapisanych wielokrotności liczb 2 i 5 są wspólnymi wielokrotnościami obu liczb? Na pewno zero. Następnie mamy liczbę 10 i liczbę 20. Skupimy się najpierw na zerze. Czy 0 może występować w mianowniku? Nie. W mianowniku znajduje się liczba przez którą dzielimy, a wiesz, że nie możemy dzielić przez zero. Szukając wspólnego mianownika na pewno będziemy wykluczać zero. Kolejną i w tym przypadku najmniejszą wspólną wielokrotnością liczb 2 i 5 jest 10. Oznacza to że ułamek 1/2 możemy rozszerzyć do ułamka o mianowniku 10. Ułamek 1/5 też możemy rozszerzyć do ułamka o mianowniku 10. Zatrzymaj lekcję i zrób to samodzielnie. Wiemy, że dwa razy pięć to dziesięć. By rozszerzyć ułamek 1/2 do ułamka o mianowniku 10, należy licznik i mianownik pomnożyć przez pięć. Otrzymamy pięć dziesiątych. Wiemy też, że 5 razy 2 to 10. By rozszerzyć ułamek 1/5 do ułamka o mianowniku 10, trzeba licznik i mianownik pomnożyć przez dwa. Otrzymamy dwie dziesiąte. Teraz dodamy oba ułamki. Co otrzymamy? Mianowniki są takie same, dodajemy liczniki. Pięć dodać dwa to siedem. Otrzymamy 7/10. Czy ten ułamek da się zapisać w postaci liczby mieszanej? Nie, gdyż licznik jest mniejszy od mianownika. A czy da się skrócić ten ułamek? Nie da się. Jedynym wspólnym dzielnikiem liczb 7 i 10 jest liczba 1. Tego ułamka nie da się skrócić. Jeszcze raz przypomnę, że dodając dwa ułamki o różnych mianownikach, chcemy je sprowadzić do tego samego mianownika który jest wielokrotnością obu liczb. W tym przykładzie wybraliśmy liczbę 10. Widzisz jednak, że wspólną wielokrotnością liczb 2 i 5 jest również liczba 20. Zobaczmy, co się stanie, gdy rozszerzymy oba ułamki do ułamka o mianowniku 20. Zatrzymaj lekcję i zrób to samodzielnie. Wiemy, że 2 razy 10 to 20. Rozszerzając ułamek 1/2 do ułamka o mianowniku 20, będziemy mnożyli licznik i mianownik przez 10. Otrzymamy dziesięć dwudziestych. Tutaj mamy 5. Wiemy, że 5 razy 4 to 20. Mnożymy więc licznik i mianownik tego ułamka przez cztery. Otrzymamy cztery dwudzieste. Dodajmy do siebie oba ułamki. Co otrzymamy? Czternaście dwudziestych. Tu mamy 14 dwudziestych, a tu 7 dziesiątych.
Dodawanie ułamków Dodawanie ułamków o identycznym mianowniku W przypadku dodawania ułamków o takim samym mianowniku wystarczy dodać ich liczniki. Mianownik pozostaje bez zmian. Należy Pamiętać, że wynikiem tego działania może być ułamek niewłaściwy 3 5 + 1 5 = 4 5 , 6 11 + 10 11 = 16 11 , 23 26 + 0 26 = 23 26 Dodawanie ułamków o różnych mianownikach W przypadku dodawania ułamków o różnych mianownikach pierwszym krokiem jest sprowadzenie ich do wspólnego mianownika, czyli do sytuacji, kiedy mianowniki obydwu ułamków będą miały tę samą wartość. Następnie postępujemy analogicznie, jak w przypadku dodawania ułamków o tym samym mianowniku, a więc liczniki są sumowane, natomiast mianownik nie ulega zmianie. W celu sprowadzenia ułamków do wspólnego mianownika stosuje się dwa podejścia. Pierwsze z nich to pomnożenie dwóch mianowników. Uzyskany wynik staje się nowym mianownikiem. Licznik pierwszego ułamka obliczany jest jako iloczyn tego licznika oraz mianownika drugiego ułamka. Natomiast nowy licznik drugiego ułamka, to poprzedni licznik pomnożony przez mianownik pierwszego ułamka. 2 3 + 3 7 = 14 21 + 9 21 = 23 21 , 7 5 + 3 6 = 42 30 + 15 30 = 57 30 , 3 8 + 1 7 = 21 56 + 8 56 = 29 56 Drugie podejście to arbitralne wybranie nowego mianownika, który jest wielkokrotnością obydwu mianowników. Przykładowo dla 8 i 20 będzie to 40 (w przypadku pierwszego podejścia wynikiem byłoby 160, gdyż jest to iloczyn 8 i 20). 1 2 + 5 12 = 6 12 + 5 12 = 11 12 , 3 20 + 1 8 = 6 40 + 5 40 = 11 40 , 5 6 + 3 8 = 20 24 + 9 24 = 29 24 Dodawanie ułamków i liczb całkowitych W przypadku dodawania ułamków i liczb całkowitych wynikiem może być liczba mieszana lub też ułamek niewłaściwy. W przypadku prezentowania wyniku w postaci liczby całkowitej wynikiem jest przepisana liczba całkowita i ułamek: 2 + 5 12 = 2 5 12 , 3 17 + 8 = 8 3 17 W sytuacji, gdy wynikiem powinien być ułamek niewłaściwy, w pierwszej kolejności należy zamienić liczbę całkowitą na ułamek. W tym celu sprawdzamy wartość mianownika ułamka. Mianownik liczby jest identyczny, jak mianownik drugiego ułamka. Natomiast licznik jest iloczynem mianownika i zamienianej liczby całkowitej. Ostatnim krokiem jest sumowanie liczników obydwu ułamków. 1 2 + 3 = 1 2 + 6 2 = 7 2 , 3 15 + 4 = 3 15 + 60 15 = 11 40 , 5 6 + 3 8 = 20 24 + 9 24 = 29 24 Dodawanie ułamków o różnych znakach Nieco bardziej złożone jest zagadnienie dodawania ułamków o różnych znakach, gdzie należy wykonać kilka operacji. W pierwszym kroku (podobnie jak w powyższych przykładach) należy jednym ze sposobów sprowadzić obydwa ułamki do wspólnego mianownika. Znak ułamka wynikowego, to znak ułamka, którego licznik jest większy. Licznik ułamka wynikowego to różnica pomiędzy większym a mniejszym licznikiem. Z kolei mianownik jest taki sam, jak mianowniki sumowanych ułamków. - 3 4 + 1 5 = - 3 ⋅ 5 4 ⋅ 5 + - 1 ⋅ 4 5 ⋅ 4 = - 15 20 + 4 20 = - (15-4) 20 = - 11 20 Wyznaczamy wspólny mianownik dla 4 i 5. W tym celu ułamek pierwszy (licznik i mianownik) mnożymy przez mianownik ułamka drugiego. Z kolei drugi ułamek mnożymy przez mianownik ułamka pierwszego. Sprawdzamy, który z ułamków ma większy licznik. Przy ułamku pierwszym licznik wynosi 15, natomiast przy drugim tylko 4. Znak ułamka wynikowego będzie taki, jak znak ułamka o większym liczniku. Przy ułamku - 15 20 mamy znak minus, tak więc wynikowy ułamek będzie również ujemny. Wreszcie wystarczy odjąć od większego licznika mniejszy licznik. Mianownik ułamka wynikowego jest taki sam, jak mianowniki ułamków, na których działamy. Dodawanie ułamka i liczby całkowitej o różnych znakach W przypadku dodawania ułamka i liczby całkowitej o różnych znakach pierwszym krokiem jest zamiana liczby całkowitej na ułamek niewłaściwy. Następnie jedną z wybranych metod sprowadzamy obydwa ułamki do wspólnego mianownika. Dalej już analogicznie, jak w przypadku dodawania ułamków o różnych znakach. 8 + ( - 7 8 ) = 6 ⋅ 8 8 + ( - 7 8 ) = 48 8 + ( - 7 8 ) = (48-7) 8 = 41 8 W pierwszym kroku zamieniamy liczbę całkowitą na ułamek o mianowniku identycznym, jak mianownik drugiego ułamka. Jedność w tym wypadku może zostać przedstawiona jako 8 8 Mamy 6 jedności, czyli: 48 8 Dalej postępujemy analogicznie, jak we wcześniejszym zadaniu. Ułamek o większym liczniku to 48 8 przed którym stoi znak dodatni. Wynikiem będzie więc dodatni ułamek o mianowniku równym 8. z Kolei w liczniku znajduje się różnica 48 i 7.
Ukraińskie napisy do naszych filmów / Українські субтитри до наших фільмів Matematyka Fizyka Chemia Biologia Egzaminy Ósmoklasiści Maturzyści Inspiracje Współpraca FAQ Zasoby
dodawanie ułamków zwykłych o różnych mianownikach